The clinical use of regenerative therapy in COPD

The clinical use of regenerative therapy in COPD

International Journal of COPD

 

Source

International Journal of COPD 2014:9 1389–1396    http://dx.doi.org/10.2147/COPD.S49519

Roberto Lipsi1Paola Rogliani1Luigino Calzetta2Andrea Segreti1Mario Cazzola1

 

Abstract

Regenerative or stem cell therapy is an emerging field of treatment based on stimulation of endogenous resident stem cells or administration of exogenous stem cells to treat diseases or injury and to replace malfunctioning or damaged tissues. Current evidence suggests that in the lung, these cells may participate in tissue homeostasis and regeneration after injury. Animal and human studies have demonstrated that tissue-specific stem cells and bone marrow- derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for chronic obstructive pulmonary disease. The use of bone marrow-derived stem cells could allow repairing and regenerate the damaged tissue present in chronic obstructive pulmonary disease by means of their engraftment into the lung. Another approach could be the stimulation of resident stem cells by means of humoral factors or photobiostimulation.

 

Conclusion

At this time, COPD treatment is based on the administration of drugs that are able to reduce symptoms and prevent exacerbations. However, these therapies do not allow for changing the natural history of the disease. Animal and human studies have demonstrated that tissue-specific stem cells and BM-derived cells contribute to lung tissue regeneration and protection, and thus administration of exogenous stem/progenitor cells or the humoral factors responsible for the activation of endogenous stem/progenitor cells may be a potent next-generation therapy for COPD (Table 1). The use of BM-derived stem cells could allow us to repair and regenerate the damaged tissue present in COPD by means of their engraftment into the lung. Another approach could be the in vitro stimulation of stem cells that can be subsequently introduced into the body by means of the photobiostimulation approach.77 Thus, a regenerative approach may modulate both local and systemic inflammation and, at the same time, accelerate alveolar epithelial and endothelial turnover, modifying the natural course of COPD.79 Moreover, one of the latest findings in cell therapy is represented by the application of the “magnetic targeting” approach for improving cell and tissue engraftment into the damaged organ. It consists in the use of a magnetic cylinder made by superparamagnetic iron oxide nanoparticles surrounding the graft to increase the number of stem cells seeded into the organ. This technique is still in progress, and data show a certain grade of cytotoxicity in airway application.80  Finally, the field of regenerative therapies is rapidly progressing, and initial data are very promising. However, the possible indications and potential adverse effects of stem cell therapy have yet to be fully elucidated.

 

Study PDF Link 

 

Ready to make change?